A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm
نویسندگان
چکیده
The behaviors of the animals or embodied agents are characterized by the dynamic coupling between the brain, the body, and the environment. This implies that control, which is conventionally thought to be handled by the brain or a controller, can partially be outsourced to the physical body and the interaction with the environment. This idea has been demonstrated in a number of recently constructed robots, in particular from the field of "soft robotics". Soft robots are made of a soft material introducing high-dimensionality, non-linearity, and elasticity, which often makes the robots difficult to control. Biological systems such as the octopus are mastering their complex bodies in highly sophisticated manners by capitalizing on their body dynamics. We will demonstrate that the structure of the octopus arm cannot only be exploited for generating behavior but also, in a sense, as a computational resource. By using a soft robotic arm inspired by the octopus we show in a number of experiments how control is partially incorporated into the physical arm's dynamics and how the arm's dynamics can be exploited to approximate non-linear dynamical systems and embed non-linear limit cycles. Future application scenarios as well as the implications of the results for the octopus biology are also discussed.
منابع مشابه
Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot.
The octopus is an interesting model for the development of soft robotics, due to its high deformability, dexterity and rich behavioural repertoire. To investigate the principles of octopus dexterity, we designed an eight-arm soft robot and evaluated its performance with focused experiments. The OCTOPUS robot presented here is a completely soft robot, which integrates eight arms extending in rad...
متن کاملSoft Robot Arm Inspired by the Octopus
The octopus is a marine animal whose body has no rigid structures. It has eight arms composed of a peculiar muscular structure, named a muscular hydrostat. The octopus arms provide it with both locomotion and grasping capabilities, thanks to the fact that their stiffness can change over a wide range and can be controlled through combined contractions of the muscles. The muscular hydrostat can b...
متن کاملExperimental Identification and Hybrid PID-Fuzzy Position Control of Continuum Robotic Arms
Continuum robotic arms that are inspired from nature, have many advantages compared to traditional robots, which motivate researchers in this field. Dynamic modeling and controlling these robots are challenging subjects due to complicated nonlinearities and considerable uncertainties existing in these structures. In this paper, first a dynamic three-dimensional model of the continuum robotic ar...
متن کاملMeasuring information transfer in a soft robotic arm
Soft robots can exhibit diverse behaviors with simple types of actuation by partially outsourcing control to the morphological and material properties of their soft bodies, which is made possible by the tight coupling between control, body, and environment. In this paper, we present a method that will quantitatively characterize these diverse spatiotemporal dynamics of a soft body based on the ...
متن کاملDesign and Development of a Soft Actuator for a Robot Inspired by the Octopus Arm
The octopus arm presents peculiar features, like the capability of bending in all directions, producing fast elongations, and varying its stiffness. Such features are very attractive from a robotics point of view. In the octopus, these unique motor capabilities are given by the peculiar muscular structure of the octopus arm, named muscular hydrostat, that creates a sort of antagonistic mechanis...
متن کامل